Visual arrestin activity may be regulated by self-association.
نویسندگان
چکیده
Visual arrestin is the protein responsible for rapid quenching of G-protein-coupled receptor signaling. Arrestin exists as a latent inhibitor which must be 'activated' upon contact with a phosphorylated receptor. X-ray crystal structures of visual arrestin exhibit a tetrameric arrangement wherein an asymmetric dimer with an extensive interface between conformationally different subunits is related to a second asymmetric dimer by a local two-fold rotation axis. To test the biological relevance of this molecular organization in solution, we carried out a sedimentation equilibrium analysis of arrestin at both crystallographic and physiological protein concentrations. While the tetrameric form can exist at the high concentrations used in crystallography experiments, we find that arrestin participates in a monomer/dimer equilibrium at concentrations more likely to be physiologically relevant. Solution interaction analysis of a proteolytically modified, constitutively active form of arrestin shows diminished dimerization. We propose that self-association of arrestin may provide a mechanism for regulation of arrestin activity by (i) ensuring an adequate supply for rapid quenching of the visual signal and (ii) limiting the availability of active monomeric species, thereby preventing inappropriate signal termination.
منابع مشابه
Light Adaptation through Phosphoinositide-Regulated Translocation of Drosophila Visual Arrestin
Photoreceptor cells adapt to bright or continuous light, although the molecular mechanisms underlying this phenomenon are incompletely understood. Here, we report a mechanism of light adaptation in Drosophila, which is regulated by phosphoinositides (PIs). We found that light-dependent translocation of arrestin was defective in mutants that disrupt PI metabolism or trafficking. Arrestin bound t...
متن کاملFunctional comparisons of visual arrestins in rod photoreceptors of transgenic mice.
PURPOSE To examine the biochemical characteristics of rod and cone arrestin with respect to their ability to quench the activity of light-activated rhodopsin in transgenic mice. METHODS The mouse rod opsin promoter was used to drive expression of mouse cone arrestin in rod photoreceptor cells of rod arrestin knockout (arr1-/-) mice. Suction electrode recordings from single rods were performed...
متن کاملArrestin can act as a regulator of rhodopsin photochemistry
We report that visual arrestin can regulate retinal release and late photoproduct formation in rhodopsin. Our experiments, which employ a fluorescently labeled arrestin and rhodopsin solubilized in detergent/phospholipid micelles, indicate that arrestin can trap a population of retinal in the binding pocket with an absorbance characteristic of Meta II with the retinal Schiff-base intact. Furthe...
متن کاملBeta-arrestin multimers: does a crowd help or hinder function?
In this issue of the Biochemical Journal, Xu et al. describe how they use a spot peptide array to identify a unique sequence within beta-arrestin-2 that is required for both multimerization and ERK1/2 (extracellular-signal-related kinase 1/2) scaffolding. They provide evidence that dimers may serve as more than just 'storage forms' of beta-arrestins, incapable of interacting with receptors but,...
متن کاملPhosphorylation regulates TRPV1 association with β-arrestin-2.
Post-translational modifications in TRPV1 (transient receptor potential vanilloid 1) play a critical role in channel activity. Phosphorylation of serine/threonine residues within the N- and C-termini of TRPV1 are implicated in receptor sensitization and activation. Conversely, TRPV1 desensitization occurs via a calcium-dependent mechanism and leads to receptor de-phosphorylation. Importantly, w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 274 30 شماره
صفحات -
تاریخ انتشار 1999